Gwaihir: Jupyter Notebook Graphical User Interface for Bragg Coherent Diffraction Imaging

D. Simonne*1, J. Carnis*2, C. Atlan*3, C. Chatelier*4, V. Favre-Nicolin*5, E. Zatterin*5, M. Duprez*4, S. J. Leake*6, A. Resta*7, A. Goatti*6 and M.J. Richardson*4

* Synchrotron SOLEIL, L’Orme des Marisiers, Saint-Aubin, Univ. Grenoble Alpes, CEA Grenoble, Grenoble, -Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg -European Synchrotron Research Facility, Grenoble

Analysis workflow

Introduction

- **Open-source tool** to process and analyse Bragg Coherent X-ray Diffraction data.
- **Integrates bcdi** [Carnis et al. 2021] for phase retrieval and bcdi [Carnis et al. 2021] for data pre- and post-processing.
- **Creates workflow** promoting data reproducibility.
- **Python 3.9**, GNU General Public License v3.0.

Data visualisation

Large scale facilities seek to:
- provide remote-access to high powered computing services,
- combine solutions in an interactive and accessible environment.

JupyterHub, a cloud computing service:
- heavy computations without relying on specific hardware,
- Jupyter Notebook, versatile and user-friendly IDE supporting many programming languages (Kluyver et al. 2016),
- browser-based data analysis interfaces,
- command-line scripts for advanced users,
- pre-configured data analysis environment managed efficiently by system administrators.

Chosen by:
- Google (Google Colab),
- European Synchrotron (Simple Linux Utility for Resource Management – SLURM),
- SOLEIL (GRADES).

References

1. Favre-Nicolin, Vincent et al. (2011). “Fast computation of scattering maps of nanostructures using graphical processing units”. In: Journal of Applied Crystallography

Conclusion

- Local or remote use with JupyterHub,
- User-friendly web-interface,
- Data visualisation in two or three dimensions,
- Compatible with cluster resources,
- Enables on-site fast data analysis,
- Data sharing in the CXI format
- Unique workflow.

In a world where data is steadily made more available, Gwaihir is a tool that overcomes multiple issues by bridging remote access, cluster computing and, a user-friendly interface, consequentially improving the link between synchrotrons and their users.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 818823).

GitHub.com/DSimonne/Gwaihir

References

1. Favre-Nicolin, Vincent et al. (2011). “Fast computation of scattering maps of nanostructures using graphical processing units”. In: Journal of Applied Crystallography